

OPERATOR'S MANUAL

ROTARY DRAW BENDER MODEL: RDB-350-TS (B8095)

www.machineryhouse.com.au

Table of Contents

INTRODUCTION	1
GENERAL NOTES	1
SAFETY INSTRUCTIONS	
SAFETY PRECAUTIONS	
TECHNICAL SPECIFICATIONS	
UNPACKING AND CHECKING CONTENTS	8
Cleaning	8
TRANSPORTING AND LIFTING	9
INSTALLATION	
ASSEMBLY AND SET UP	10
GETTING TO KNOW YOUR MACHINE	11
GENERAL DESIGN DESCRIPTION	12
ELECTRICAL	13
Plug Connection	
OPERATION	
Programmer Overview	
Machine Start up and Homing	
Programmer Display and Key Functions	
Main Menu Choices	
Edit a Program	
Delete Program	
Creating a Program	
Dry Running	
Manual Bend	
Running a Program	
Homing	
Operation Screen Shots	
OEM Screens and Bending More than 180 Degrees	
OEM Screen Shots	
UNDERSTANDING SPRINGBACK	
MATERIAL SELECTION	
DIE SELECTION AND INSTALLATION	
	28
Material Removal / Advancement	
PIPE AND TUBE BENDING DIAGRAMS	
BENDING GLOSSARY	
BENDING SUGGESTIONS	
Aluminum Bending	
Heavy Wall DOM tubing	
Bending With Square Dies	
Square Tooling Setup	
Large Size Square	35

INDEX TABLE ATTACHMENT (OPTIONAL EQUIPMENT)	36
Introduction	36
Connection to Your Machine	36
Height Adjustment and Leveling	36
Material Layout Operation	37
INDEX TABLE LAYOUT DIAGRAM (OPTIONAL EQUIPMENT)	
LUBRICATION AND MAINTENANCE	
Gear Box Oil	
Gedi Dux Uli	39
Main Spindle Bearing	
ELECTRICAL SCHEMATIC	
TROUBLESHOOTING	
TABLES, CHARTS, & DIAGRAMS	42
Diagram 1	44
Diagram 2	45
PARTŠ DIAGRAM	46
Base Assembly Parts Diagram	46
Control Box Parts Diagram	
Drive Assembly Parts Diagram	
Main Bending Assembly Parts Diagram	49
Quick Release Assembly Parts Diagram	
Parts List	

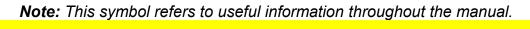
INTRODUCTION

The quality and reliability of the components assembled on a Baileigh Industrial machine guarantee near perfect functioning, free from problems, even under the most demanding working conditions. However if a situation arises, refer to the manual first. If a solution cannot be found, contact the distributor where you purchased our product. Make sure you have the serial number and production year of the machine (stamped on the nameplate). For replacement parts refer to the assembly numbers on the parts list drawings.

Our technical staff will do their best to help you get your machine back in working order.

In this manual you will find: (when applicable)

- Safety procedures
- Correct installation guidelines
- Description of the functional parts of the machine
- Capacity charts
- Set-up and start-up instructions
- Machine operation
- Scheduled maintenance
- Parts lists


GENERAL NOTES

After receiving your equipment remove the protective container. Do a complete visual inspection, and if damage is noted, **<u>photograph it for insurance claims</u>** and contact your carrier at once, requesting inspection. Also contact your distributor and inform them of the unexpected occurrence. Temporarily suspend installation.

Take necessary precautions while loading / unloading or moving the machine to avoid any injuries.

Your machine is designed and manufactured to work smoothly and efficiently. Following proper maintenance instructions will help ensure this. Try and use original spare parts, whenever possible, and most importantly; **DO NOT** overload the machine or make any unauthorized modifications.

IMPORTANT PLEASE READ THIS OPERATORS MANUAL CAREFULLY

It contains important safety information, instructions, and necessary operating procedures. The continual observance of these procedures will help increase your production and extend the life of the equipment.

SAFETY INSTRUCTIONS

LEARN TO RECOGNIZE SAFETY INFORMATION

This is the safety alert symbol. When you see this symbol on your machine or in this manual, <u>BE ALERT TO THE</u> <u>POTENTIAL FOR PERSONAL INJURY!</u>

Follow recommended precautions and safe operating practices.

UNDERSTAND SIGNAL WORDS

A signal word – **DANGER**, **WARNING**, or **CAUTION** is used with the safety alert symbol. **DANGER** identifies a hazard or unsafe practice that will result in severe <u>Injury or Death</u>.

General precautions are listed on **CAUTION** safety signs. **CAUTION** also calls attention to safety messages in this manual.

SAVE THESE INSTRUCTIONS. Refer to them often and use them to instruct others.

PROTECT EYES

Wear safety glasses or suitable eye protection when working on or around machinery.

PROTECT AGAINST NOISE

Prolonged exposure to loud noise can cause impairment or loss of hearing. Wear suitable hearing protective devices such as ear muffs or earplugs to protect against objectionable or uncomfortable loud noises.

BEWARE OF CRUSH HAZARD

NEVER place your hands, fingers, or any part of your body in the die area of this machine. Be aware of the area on either side of the dies for crush points created by material movement.

BEWARE OF PINCH POINTS

Keep hands and fingers away from the drive mechanisms, cylinders, ratchets, and other moving linkage while the machine is in operation.

KEEP CLEAR OF MOVING OBJECTS

Always be aware of the position of the material and the swing area in which the material will travel. The material will swing with significant force. This swing area will create pinch points and the force of the material movement may cause serious bodily injuries.

HYDRAULIC HOSE FAILURE

Exercise **<u>CAUTION</u>** around hydraulic hoses in case of a hose or fitting failure.

HIGH VOLTAGE

USE CAUTION IN HIGH VOLTAGE AREAS. DO NOT assume the power to be off. FOLLOW PROPER LOCKOUT PROCEDURES.

SAFETY PRECAUTIONS

Metal working can be dangerous if safe and proper operating procedures are not followed. As with all machinery, there are certain hazards involved with the operation of the product. Using the machine with respect and caution will considerably lessen the possibility of personal injury. However, if normal safety precautions are overlooked or ignored, personal injury to the operator may result.

Safety equipment such as guards, hold-downs, safety glasses, dust masks and hearing protection can reduce your potential for injury. But even the best guard won't make up for poor judgment, carelessness or inattention. <u>Always use common sense</u> and exercise <u>caution</u> in the workshop. If a procedure feels dangerous, don't try it.

REMEMBER: Your personal safety is your responsibility.

WARNING: FAILURE TO FOLLOW THESE RULES MAY RESULT IN SERIOUS PERSONAL INJURY

- 1. Only trained and qualified personnel can operate this machine.
- 2. Make sure guards are in place and in proper working order before operating machinery.
- 3. **Remove any adjusting tools.** Before operating the machine, make sure any adjusting tools have been removed.
- 4. Keep work area clean. Cluttered areas invite injuries.
- 5. **Overloading machine.** By overloading the machine you may cause injury from flying parts. **DO NOT** exceed the specified machine capacities.
- 6. Dressing material edges. Always chamfer and deburr all sharp edges.
- 7. **Do not force tool.** Your machine will do a better and safer job if used as intended. **DO NOT** use inappropriate attachments in an attempt to exceed the machines rated capacity.
- 8. Use the right tool for the job. DO NOT attempt to force a small tool or attachment to do the work of a large industrial tool. DO NOT use a tool for a purpose for which it was not intended.
- 9. **Dress appropriate. DO NOT** wear loose fitting clothing or jewelry as they can be caught in moving machine parts. Protective clothing and steel toe shoes are recommended when using machinery. Wear a restrictive hair covering to contain long hair.
- 10. **Use eye and ear protection**. Always wear ISO approved impact safety goggles. Wear a fullface shield if you are producing metal filings.

- 11. **Do not overreach**. Maintain proper footing and balance at all times. **DO NOT** reach over or across a running machine.
- 12. **Stay alert**. Watch what you are doing and use common sense. **DO NOT** operate any tool or machine when you are tired.
- 13. **Check for damaged parts**. Before using any tool or machine, carefully check any part that appears damaged. Check for alignment and binding of moving parts that may affect proper machine operation.
- 14. **Observe work area conditions**. **DO NOT** use machines or power tools in damp or wet locations. Do not expose to rain. Keep work area well lighted. **DO NOT** use electrically powered tools in the presence of flammable gases or liquids.
- 15. **Keep children away**. Children must never be allowed in the work area. **DO NOT** let them handle machines, tools, or extension cords.
- 16. **Store idle equipment**. When not in use, tools must be stored in a dry location to inhibit rust. Always lock up tools and keep them out of reach of children.
- 17. DO NOT operate machine if under the influence of alcohol or drugs. Read warning labels on prescriptions. If there is any doubt, DO NOT operate the machine.
- 18. DO NOT touch live electrical components or parts.
- 19. Turn off power before checking, cleaning, or replacing any parts.
- 20. Be sure **all** equipment is properly installed and grounded according to national, state, and local codes.
- 21. DO NOT bypass or defeat any safety interlock systems.
- 22. Keep visitors a safe distance from the work area.

TECHNICAL SPECIFICATIONS

Maximum Center Line Radius (CLR)*	24" (610mm)
Minimum Center Line Radius (CLR)*	.5" (12.7mm)
Minimum OD	.25" (6.35mm)
Mild Steel Pipe (Schedule 40)	2.5" (63.5mm)
Aluminum Pipe (Schedule 40)	2" (50.8mm)
Stainless Steel Pipe (Schedule 40)	2" (50.8mm)
Mild Steel Round Tube (Wall)	3" (.178) (76.2mm [4.75mm])
Aluminum Round Tube (Wall)	3.5" (.250) (88.9mm [6.35mm])
Stainless Steel Round Tube (Wall)	3" (.125) (76.2mm [3.17mm])
Chromolly Round Tube (Wall)	2.5" (.125) (63.5mm [3.17mm])
Mild Steel Solid Rod	1.5" (38.1mm)
Mild Steel Square Tube (Wall)	3" (.125) (76.2mm [3.17mm])
Maximum Speed to 180	16 Seconds
Power Supply	(415 VAC, 15A, 3ph, 50Hz)
Sound level	<70db
Shipping Weight (Lbs.)	1505lbs. (683kg)
Shipping Dimensions (L x W x H)	72 x 44" x 50" (1829 x 1118 x 1270mm)

Note: The photos and illustrations used in this manual are representative only and may not depict the actual color, labeling or accessories and may be intended to illustrate technique only.

Note: The specifications and dimensions presented here are subject to change without prior notice due to improvements of our products.

UNPACKING AND CHECKING CONTENTS

Your Baileigh machine is shipped complete in one crate. Separate all parts from the packing material and check each item carefully. Make certain all items are accounted for before discarding any packing material.

WARNING: SUFFOCATION HAZARD! Immediately discard any plastic bags and packing materials to eliminate choking and suffocation hazards to children and animals.

If any parts are missing, do not plug in the power cable, or turn the power switch on until the missing parts are obtained and installed correctly.

<u>Cleaning</u>

Your machine may be shipped with a rustproof waxy oil coating and grease on the exposed unpainted metal surfaces. To remove this protective coating, use a degreaser or solvent cleaner. For a more thorough cleaning, some parts will occasionally have to be removed. **DO NOT USE** acetone or brake cleaner as they may damage painted surfaces.

Follow manufacturer's label instructions when using any type of cleaning product. After cleaning, wipe unpainted metal surfaces with a light coating of quality oil or grease for protection.

WARNING: DO NOT USE gasoline or other petroleum products to clean the machine. They have low flash points and can explode or cause fire.

CAUTION: When using cleaning solvents work in a well-ventilated area. Many cleaning solvents are toxic if inhaled.

TRANSPORTING AND LIFTING

CAUTION: Lifting and carrying operations should be carried out by skilled workers, such as a truck operator. Make sure the machine is well balanced. Choose a location that will keep the machine free from vibration and dust from other machinery. Keep in mind that having a large clearance area around the machine is important for safe and efficient working conditions.

Follow these guidelines when lifting:

- The lift truck must be able to lift at least 1.5 2 times the machines gross weight.
- Make sure the machine is balanced. While transporting, avoid rough or jerky motion, and maintain a safe clearance zone around the transport area.
- Use a fork lift with sufficient lifting capacity and forks that are long enough to reach the complete width of the machine.
- Remove the securing bolts that attach the machine to the pallet.
- Approaching the machine from the side, lift the machine on the frame taking care that there are no cables or pipes in the area of the forks.
- Move the machine to the required position and lower gently to the floor.
- Level the machine so that all the supporting feet are taking the weight of the machine and no rocking is taking place.

INSTALLATION

IMPORTANT:

Consider the following when looking for a suitable location to place the machine:

- Overall weight of the machine.
- Weight of material being processed.
- Sizes of material to be processed through the machine.
- Space needed for auxiliary stands, work tables, or other machinery.
- Clearance from walls and other obstacles.
- Maintain an adequate working area around the machine for safety.
- Have the work area well illuminated with proper lighting.

- Keep the floor free of oil and make sure it is not slippery.
- Remove scrap and waste materials regularly, and make sure the work area is free from obstructing objects.
- If long lengths of material are to be fed into the machine, make sure that they will not extend into any aisles.
- **LEVELING:** The machine should be sited on a level, concrete floor. For stationary machines, provisions for securing it should be in position prior to placing the machine. The accuracy of any machine depends on the precise placement of it to the mounting surface.
- **FLOOR:** This tool distributes a large amount of weight over a small area. Make certain that the floor is capable of supporting the weight of the machine, work stock, and the operator. The floor should also be a level surface. If the unit wobbles or rocks once in place, be sure to eliminate by using shims.
- **WORKING CLEARANCES:** Take into consideration the size of the material to be processed. Make sure that you allow enough space for you to operate the machine freely.
- **POWER SUPPLY PLACEMENT:** The power supply should be located close enough to the machine so that the power cord is not in an area where it would cause a tripping hazard. Be sure to observe all electrical codes if installing new circuits and/or outlets.

ASSEMBLY AND SET UP

WARNING: For your own safety, DO NOT connect the machine to the power source until the machine is completely assembled and you read and understand the entire instruction manual.

- 1. Remove the machine from the skid it was shipped on.
- 2. Check the oil level and top off if necessary.
- 3. Read through the remainder of the manual and become familiar with the die installation and settings as well as normal operation.
- 4. Position the machine as desired following the installation guidelines.
- 5. Follow the electrical guidelines to connect the machine to a power supply.

GETTING TO KNOW YOUR MACHINE

Item	Description	Function
Α	Grease Zerk	For Greasing Main Spindle Bearing
В	Main Spindle And Drive Pins (shown with a forming die installed)	For Supporting The Bend Dies And Driving The Dies
С	Center Pin	For Aligning Die Onto Spindle
D	Hitch Pin (shown with a counter die installed)	For Mounting The Counter Die
Е	Quick Release	For Pivoting Counter Die Away From Bend Die To Remove Material Quickly
F	Touch Screen Controller	For Programming Bend Data
G	Numerical Counter	For Indicating Counter Die Position
Н	3 Legged Handwheel	For Adjusting Counter Die Position
I	Power Cord	For Connecting To Main Power Source
J	Foot Pedal Guard	Protect Against Accidental Operation
K	Forward Foot Pedal	Will Operate The Machine In The cw Direction
L	Reverse Foot Pedal	Will Operate The Machine In The ccw Direction

GENERAL DESIGN DESCRIPTION

You have made a practical choice in purchasing the RDB-350-TS Fully Programmable Bending Machine. It has been carefully built of high quality materials and designed to give many years of efficient service. The simplicity of design and minimum effort required to operate the machine contributes towards meeting schedules and producing greater profits.

The RDB-350-TS is an electric powered "Rotary Draw" bending machine. To bend material, a bending die and counter die are required. The material is hooked by the bending dies' hook arm and is powerfully rotated in the clockwise direction. As the bending die rotates, the counter die remains stationary, forcing the material to conform to the radius and shape of the bending die. This machine can rotate in both the clockwise and counter clockwise directions. A user friendly touch screen operating station can store up to 140 bend programs with 10 sequential bends inside of the main program.

The RDB-350-TS Bending Machine you have purchased is built of solid steel ensuring maximum rigidity. Tongue and groove design with grade 8 bolts throughout provides very high rigidity and stability.

Throughout this manual are listed various safety-related descriptions for attention. These matters for attention contain the essential information to the operators while operating, and maintaining. Failure to follow these instructions may result in great damage to the machine or injury to the operator.

ELECTRICAL

WARNING: Baileigh Industrial is not responsible for any damage caused by wiring up to an alternative 3-phase power source other than direct 3-phase. If you are using an alternate power source, consult a certified electrician or contact Baileigh Industrial prior to energizing the machine.

ATTENTION: HAVE ELECTRICAL UTILITIES CONNECTED TO MACHINE BY A **CERTIFIED ELECTRICIAN!**

Your Baileigh Machine is Certified

Check if the available power supply is the same as required by the machine (consult nameplate on machine)

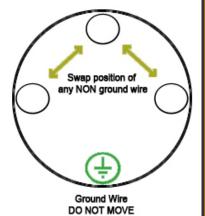
WARNING: Make sure the grounding wire (green) is properly connected to avoid electric shock. DO NOT switch the position of the green grounding wire if any electrical plug wires are switched during hookup.

Motor Specifications

Your tool is wired for 415 volt, 50Hz alternating current. Before connecting the tool to the power source, make sure the machine is cut off from power source.

Considerations

- Observe local electrical codes when connecting the machine.
- The circuit should be protected with a time delay fuse or circuit breaker with a amperage rating slightly higher than the full load current of machine.
- A separate electrical circuit should be used for your tools. Before connecting the motor to the power line, make sure the switch is in the "OFF" position and be sure that the electric current is of the same characteristics as indicated on the tool.
- All line connections should make good contact. Running on low voltage will damage the motor.
- In the event of a malfunction or breakdown, grounding provides a path of least resistance for electric current to reduce the risk of electric shock. This tool is equipped with an electric cord having an equipment-grounding conductor and a grounding plug. The plug must be plugged into a matching outlet that is properly installed and grounded in accordance with all local codes and ordinances.



WARNING: In all cases, make certain the receptacle in question is properly grounded. If you are not sure, have a qualified electrician check the receptacle.

- Improper connection of the equipment-grounding conductor can result in risk of electric shock. The conductor with insulation having an outer surface that is green with or without yellow stripes is the equipment-grounding conductor. If repair or replacement of the electric cord or plug is necessary, do not connect the equipment-grounding conductor to a live terminal.
- Check with a qualified electrician or service personnel if the grounding instructions are not completely understood, or if in doubt as to whether the tool is properly grounded.
- Repair or replace damaged or worn cord immediately.

Plug Connection

- 1. Have an electrician install the correct plug for the application.
- 2. Once hooked up, turn on the power supply and start the machine.
- 3. For three phase applications, check that the motor is running in the correct direction.
- 4. If not, cut the power to the machine. Swap the position of any two of the three power wires; but DO NOT change the position of the green grounding wire!

OPERATION

CAUTION: Always wear proper eye protection with side shields, safety footwear, and leather gloves to protect from burrs and sharp edges.

CAUTION: Keep hands and fingers clear of the dies and swing arms. Stand to the front of the machine to avoid getting hit with the material during the bending process. When handling large heavy materials make sure they are properly supported.

Programmer Overview

- This draw bender utilizes a fully programmable touch screen operator interface. The unique operator interface allows you to write and save 170 programs with 10 bends per program. Operation is extremely simple to learn. Simple foot pedal controls allow you to easily produce fast and accurate bends. The following instructions will walk you through the basic functions.
- Be sure to follow the dry running instructions to familiarize yourself with all the functions of the control before any actual bending of material is performed.

Note: See the Screen Shots section of the manual to match the figure call outs.

Machine Start up and Homing

- 1. Tum the main power switch to the "ON" position.
- 2. It takes about 1 minute for the programmer to boot up. The machine has been homed from the factory and does not need to be re-homed unless the encoder or drive motor needs servicing. In the Home or "0" position, the flat of the spindle is parallel to the machine frame.
- 3. The programmer will display the "RMD MAIN SCREEN" see Fig.1.
- 4. On the RMD MAIN SCREEN, you can chose "MANUAL MODE" or "RUN, VIEW OR EDIT A PROGRAM".

Programmer Display and Key Functions

1. The touch screen control is very self-explanatory. By touching the labeled touch boxes on the screen, the listed parameter or function will be selected. The exit box will return you to the previous screen and get you back to the RMD MAIN SCREEN. When entering names and degrees, a keypad will be displayed Fig 2 and 3.

Main Menu Choices

- "RUN, VIEW OR EDIT A PROGRAM" Select this Feature if you want to: Run a program View the settings of an existing program Edit or create a program.
 - a. Up to 170 programs with 10 bends per program can be created using any alphanumeric characters.
 - b. From the Program selector screen Fig 4, choose the program you wish to edit by touching the name of the program from the right side column. Use the up and down arrows to move the screen up or down one line or one page at a time. Dashed lines in the name indicate that no program is saved to that location.
 - c. After selecting the program. Touch the VIEW/EDIT button and the program parameters will be displayed Fig 5. Press the View button in the upper right corner to change to the Edit mode.
 - d. Verify that the bend to be edited is selected. Press the box for the parameter to be changed and the digit key pad will open. Enter the desired numbers. Add zeros as needed to move the decimal position.
 - e. When the changes have been completed, press the Save button near the top of the screen. If this is a new program, the alpha key pad will open to allow the program to be named and saved.

Edit a Program

- 1. Select this feature when you want to edit an existing program.
 - a. From the Program selector screen Fig 4, choose the program number to be edited.

Use the up and down arrows to move the screen up or down one line or one page at a time. Dashed lines in the name indicate that no program is saved to that location.

- b. After selecting the program line. Touch the VIEW/EDIT button and the program parameters will be displayed Fig 5. Press the View button in the upper right corner to change to the Edit mode.
- c. Verify that the bend to be edited is selected. Press the box for the parameter to be changed and the digit key pad will open. Enter the desired numbers. Add zeros as needed to move the decimal position.
- d. When the changes have been completed, press the Save button (Fig. 5) near the top of the screen. If this is a new program, the alpha key pad (Fig. 3) will open to allow the program to be named and saved.
- 2. After selecting the program touch the RUN button and the program parameters will be displayed Fig 6.

- 3. At this point, pressing the forward foot pedal will start the bending process. The machine will rotate in the selected direction at the chosen speed to the desired degree totaling the bend angle plus the spring back degrees.
- 4. When at the final position, the control will prompt you to "Press REV Pedal to Home" Fig 8.

Delete Program

1. Follow the above steps to get to the edit screen Fig 5. Press and hold the CLEAR PROGRAM button to erase all of the bend data for the selected program.

Creating a Program

- 1. Choose "RUN, VIEW OR EDIT A PROGRAM" from the RMD MAIN SCREEN Fig 1.
- 2. Select an open program number from 1 to 170 Fig 4. If all of the program numbers have been filled, then an existing file will need to be overwritten to the new program parameters.
- 3. When the desired program slot has been selected, press, VIEW EDIT Fig 4.
- 4. After selecting the program line. Touch the VIEW/EDIT button and the program parameters will be displayed Fig 5. Press the View button in the upper right corner to change to the Edit mode.
- 5. On the edit screen enter the desired PROGRAM NAME by touching the name field Fig. 5.
- 6. The alpha key pad (Fig. 3) will open. Name the file for future reference, (There is an 8 character limit) and press enter to save the name and return to the previous screen.
- 7. Enter the bend ANGLE Fig 5.
- 8. Enter the SPRING BACK Fig 5.
- 9. Enter the SPEED from 1-6. Fig 5, 1 or 2 recommended. The closer to bend capacity, the slower the speed setting should be.
- 10. Enter a COUNTERDIE POSITION (just a reference number taken from the leadscrew counter).
- 11. Enter a MATERIAL ROTATION if desired. (Normally the first bend is at zero.)
- 12. Repeat above steps for Bends #2 to #10.
- 13. Press the "Exit" button in the upper left corner of the screen. The save confirmation screen (Fig. 10) will display.
- 14. Press Yes or No as desired to save or erase the changes.
- 15. From the edit screen (Fig 5) press Run to run the program.

Dry Running

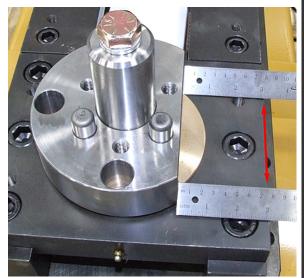
- Once you are familiar with the machine and programming unit, it is important to dry run a few programs without any tooling or material installed.
- Follow the steps in the Running a Program sections to dry run the program.
- Repeat this process as many times as needed to fully understand the functions and controls.

CAUTION: Do not attempt to operate if you are not confident or do not understand the controls! Feel free to consult the factory with any questions.

Manual Bend

- 1. Select this feature to bend manually without the need to create a program. The actual degree will be displayed while in this mode. This mode also allows you to enter in one bend angle and on spring back value Fig 9.
- 2. With the arrow keys a bend speed from 1-6 can be selected.

Running a Program


- 1. Choose "RUN, VIEW OR EDIT A PROGRAM" from the RMD MAIN SCREEN Fig 1.
- 2. To edit a program, choose the program you wish to edit by touching the name of the program from the right side column. Use the up and down arrows to move the screen up or down one line or one page at a time. Dashed lines in the name indicate that no program is saved to that location.
- 3. After selecting the program touch the RUN button and the program parameters will be displayed Fig 6.
- 4. Verify the spindle is clear and ready to perform a dry run or that the die is secure and material properly loaded.
- 5. Press and hold the Forward foot pedal down to produce the sample bend.
- 6. When at the final position, the screen will read, "Bend Done. Release FWD Pedal" and then "Press REV Pedal to Home" Figs 7 and 8.
- 7. Press and hold the reverse foot pedal until the spindle reaches "0" degrees.
- 8. If a second or more bends have been programmed, the Bend # display will change to the next bend number. This will be the next bend and so on all the way to the last programmed bend up to bend 10.
- 9. Reposition or load the material for the next bend.
- 10. If only 1 bend is programmed, bend 1 will be repeated until the program is exited and a different program is loaded.

<u>Homing</u>

IMPORTANT: Don't Change the home position unless you are sure the position was lost, damage to the machine and tooling can occur if the home position is set incorrectly.

- 1. The machine has been homed from the factory and does not need to be re-homed unless the encoder or drive motor needs servicing. In the Home or "0" position, the flat of the spindle is parallel to the machine frame. Verify that the spindle is at the home positon using the manual function before moving to the next step.
 - a. Measure from each end of the flat on the spindle to the edge of the bending frame. The two dimensions must be exactly the same in the Home position. Slow the Motor Speed to the slowest position if having difficulties tapping the foot pedals to get the exact setting.

- 2. To set the home position, press the "Help" button on the OEM screens Fig 1 to display at "Set Home" button.
- 3. Press the Set Home button to enter the Machine Homing screen Fig 12.
- 4. Once in the Machine Homing screen, follow the directions on the screen to set the home position.

The Home position is saved forever even if the power is shut down. You may lose the home position if power is lost to the machine during a move or if wiring or electronics are disconnected inside the electrical cabinet.

5. Press the Exit button to keep the existing Home position. Press and hold the save button at the bottom of the screen to save the new Home position.

Operation Screen Shots

OP Screen Figure 1

OP Screen Figure 3

OP Screen Figure 5

OP Screen Figure 2

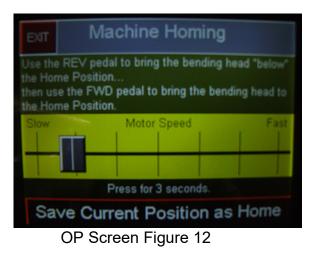
OP Screen Figure 4



OP Screen Figure 6

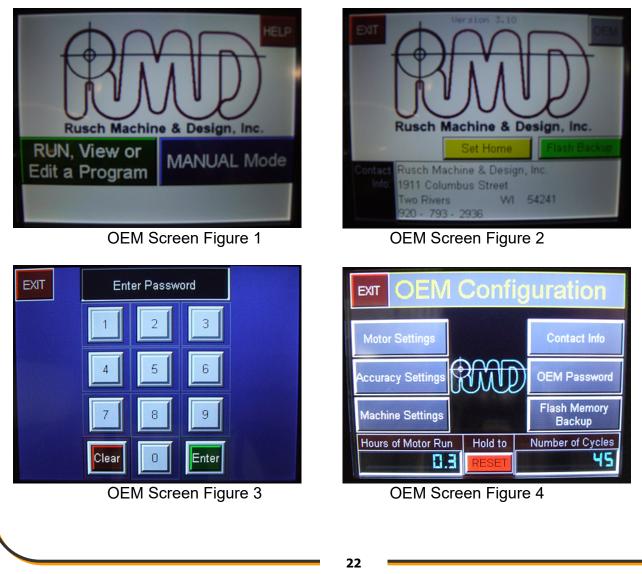
OP Screen Figure 7

OP Screen Figure 9


OP Screen Figure 11

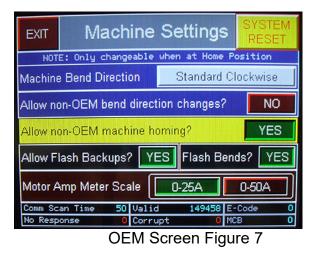
OP Screen Figure 8

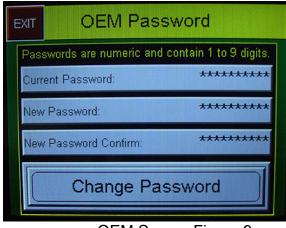
OP Screen Figure 10

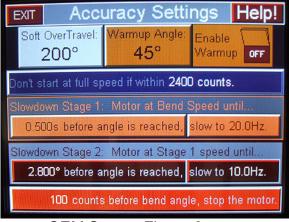


OEM Screens and Bending More than 180 Degrees

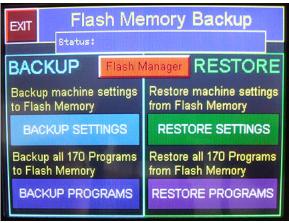
- Parameters in the OEM MENU should only be done after consulting the factory. Changing these parameters without consulting the factory will void the warranty.
- This machine is capable of bending more than 180 degrees. Contact your distributor about your application.
 - $_{\odot}$ It will require a password to make the machine go past 200 degrees.
 - Requires special tooling to allow removal of bent part. If standard tooling is used, the material will be locked onto the die.
- Activation of bi directional option should only be done at the factory. Consult the factory for specific information.


OEM Screen Shots




EXIT Motor Settings			
Speed 1:	30.0Hz	Gearbox 1: Ratio:	226.34:1
Speed 2:	40.0Hz	Encoder	
Speed 3:	50.0Hz	Teeth:	38
Speed 4:	60.0Hz	Accel Time	Decel Time
Speed 5:	65.0Hz	1.0s	0.3s
Speed 6:	70.0Hz	Set M Home F	

OEM Screen Figure 5



OEM Screen Figure 9

OEM Screen Figure 6

EXIT	Contact Info
Name: Address City/ST/	Edit HELP Screen Contact Information Rusch Machine & Design, Inc. 1911 Columbus Street Zip: Two Rivers WI 54241 Ext: 920 - 793 - 2936
Note: P	Phone extension will only show if other than O.
	OEM Screen Figure 8

OEM Screen Figure 10

UNDERSTANDING SPRINGBACK

Springback can be difficult to understand. As material is bent, the materials yield strength resists being formed. As a final degree is reached, the machine will have enough power to hold the bend at a set degree, but as the pressure of the machine is released, the material has a resistance built in, so it "springs back"

Springback will vary with every size, type and wall thickness, so it will never be consistent from size to size.

The best way to determine a materials springback is to do sample bends to 90 degrees until a perfect 90 is obtained.

- At that point document the actual machine degrees.
- Full manual mode is the best place to do these tests.
- Use the overbend amount and enter that value into the springback field.

MATERIAL SELECTION

CAUTION: It must be determined by the customer that materials being processed through the machine are NOT potentially hazardous to operator or personnel working nearby.

When selecting materials keep these instructions in mind:

- Material must be clean and dry. (without oil)
- Material should have a smooth surface so it processes easily.
- Dimensional properties of material must be consistent and not exceed the machine capacity values.
- Chemical structure of material must be consistent.
- Buy certificated steel from the same vendor when possible.

В

С

D

F

DIE SELECTION AND INSTALLATION

Before any bending can take place, the proper die set must be chosen to match the material being bent. (EX) 1-1/2" diameter tubing requires a die set marked 1-1/2" tube.

- А Hook Arm
- В Bend Die
- С Hold down Bolts
- D Plastic Slide
- Е Counter Die Mount
- F Bronze Counter Die Insert
- G "0" Mark

Note: *Pipe and Tube are not* the same, (see table 1) for nominal pipe sizes. All RMD dies are color coded to avoid confusion between pipe and tube (see table 2).

IMPORTANT: Damaged or worn tooling should be replaced before

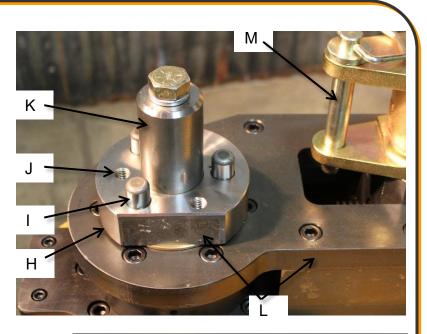
attempting to bend material. This will

ensure that bends are correct and provide a longer life to machine components. When handling large heavy material, make sure it is properly supported.

1. To install the die, slip the die over the centering pin until the three unequally spaced drive pins engage the receiving holes formed in the die.

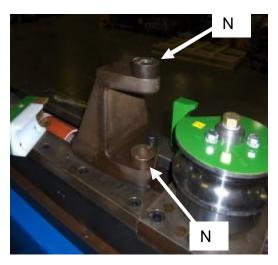
Note: The die will only fit one way.

- 2. When the drive pins line up the die will drop all the way down to the spindle.
- 3. Install and tighten the 1/2-13 socket head bolts provided with the die. Tighten these bolts enough to hold the die firmly down to the spindle. Approximately 30-40ft-lb. (40-50N•m).


IMPORTANT: FAILURE TO PROPERLY BOLT DOWN DIE WILL RESULT IN DAMAGE TO MACHINE AND TOOLING.

- H Spindle
- I Die Drive Pins
- J 1/2-13 Tapped holes for bolting down dies
- K Center Pin
- L At "0" position, this flat is parallel with the machine side
- M Hitch Pin
- 4. To install the counter die, remove the hitch pin and insert the counter die in the opening in the counter die mount until the holes line up.
- 5. Now insert the hitch pin through all the holes, reinstall clip on the hitch pin with the engraved side of the counter die facing up.

IMPORTANT: Be sure the long end of the counter die points away from the hook arm, or to the right of machine.



- Bending some thicker or harder material may require the use of a special counterdie with a 1-1/4" pin mounting hole. To install the counterdie with the larger hole the two reducer collars (N) must be removed.
- To do this loosen the (2) set screw (casting type counter die mount) or the 5/16 socket head screws (welded type counterdie mount) and slip them out of the holes. Counter dies that use the 1-1/4" pin do not use these reducer collars.

Installing counterdie with 3/4" pin

Remove reducer collars to install 1-1/4" counter die pin.

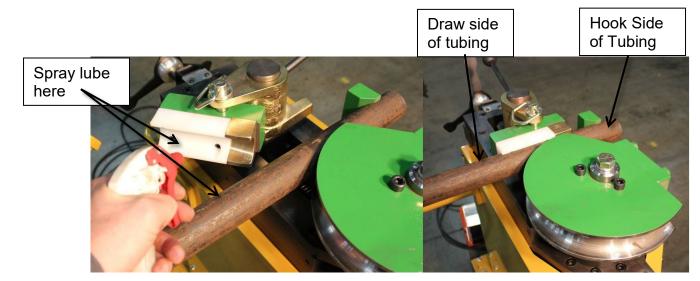
Material Layout

In order to create accurate parts, you will have to layout the material in flat form. First you will need to determine how much material is used per degree of bend. Use the multiplier table on Table #3 to determine the arc lengths for the die in use. Or use the following formula:

Alternate arc length formula:

Example: 6.0 clr x2=1212x3.14=37.699 37.699/360=0.1047" per degree 0.1047x 90 degrees =9.425" of material used for a 90 degree bend.

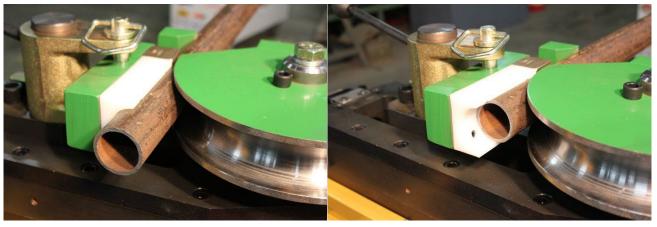
Once the arc lengths are determined you can begin layout of the material using Diagram #1 as a reference.


- Diagram #1 shows a simple part bent on the same plane in the same direction.
- Diagram #2 shows bending based off of a centerline in two directions.
- For symmetrical bends, centerline bending is easiest.
- For non-symmetrical bends, continuous one direction bending is best.

- Another way to layout material is to draw them in a 2D computer software program like Auto Cad. There are many free programs on the internet. In a 2D program you will draw the parts centerline only with corresponding clr's. Then you will be able to list individual segments of the bent part. This data can be directly entered into the control.
- Another program available is BEND-TECH which is a program specifically designed for tube bending and will give you all of the required data to make a part. This software is available from Baileigh Industrial. Contact your distributor for availability.
- Bending with a rotary draw bender requires determining the start of bend point which will line up with the "0" mark on the die. The portion of the tube toward the hook arm will be locked to the die, the portion toward the counter die is the draw side and will slide along the counter die and conform to the dies shape/radius.

Material Insertion

- 1. At the start page, choose "RUN PROGRAM" and choose program to run following screen instructions.
- 2. Once the die set is properly installed and the desired program is loaded and performs as needed, the correct size material can now be inserted.


3. With the die head at home or "0" position, insert material past the hook arm aligning the "0" mark on the die with where the bend will start on the material.

Important: Liberally apply lubricant along the counterdie and the 1/2 of the material that contacts the counter die with a WD-40 style lubricant or equivalent. Do not lubricate the bending die. Lubricating the bending die will encourage slipping of material in the bending die.

- 4. Tighten the counter die assembly applying moderate pressure on the material.
- 5. With the counter die tight, document the number displayed on the Leadscrew counter, you will want to return to the same exact number every time to ensure exact counter die positioning and repeatable bends. This number can be entered in the control for programmed bends.
- 6. Be sure there are no obstructions along the draw side of the material.
- 7. Be sure to leave enough material past the plastic slide to produce the desired bend.

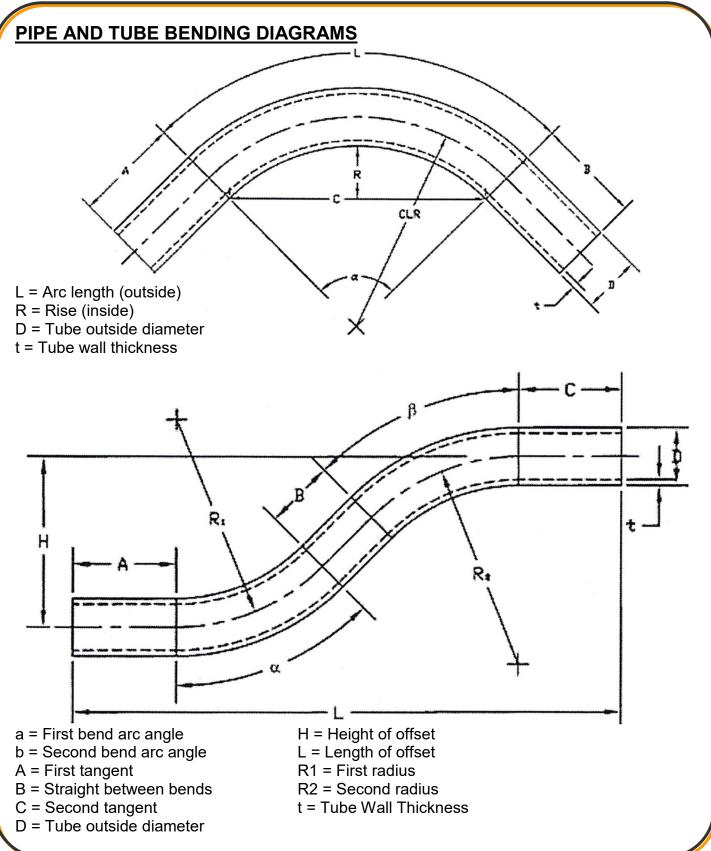
Left

Right

- The left figure shows the recommended minimum / correct amount of material remaining to be fully supported in plastic slide.
- The right figure shows the maximum amount the material can be pulled through the counterdie. Pulling the material further than shown into the counter die, it will destroy the plastic slide.

Left

Right


- In the left figure, there is not enough material to complete the bend. This bend will damage the dies.
- The right figure shows a correct bending orientation.

IMPORTANT: Orienting your tubing in this fashion will cause damage to your tooling and machine!! DO NOT pull bent tubing into the counter die! Make sure you have enough straight material on the draw side of the tube to create your bend.

Material Removal / Advancement

- 1. After the die stops at the desired angle, the material needs to be removed or advanced.
- 2. Activate the reverse foot pedal. As the die starts going backwards, the counter die and its quick release will swing out of the way allowing for easy material removal.
- 3. Activate the Reverse foot pedal and hold until the die reaches its home or "0" position. If you are advancing the material, open the counter die and then reverse machine, holding the material in place. Be careful when reversing with material still in die, not to catch it on the hook arm of the die. Once the die is at the home position, the material can be removed or advanced.
- 4. Repeat previous steps for next bend in line.

BENDING GLOSSARY

Arc Length	The length of material along the centerline of the tubing
	Distance in inches from the center of curvature to the centerline
Centerline Radius (CLR)	axis of the tube bending or pipe bending bends. Abbreviated as
	CLR. See Tube Bending and Pipe Bending Diagram
Degree	Angle in degrees to which the tube/pipe bends are formed (i.e. 45 degrees, 90 degrees, 180 degrees, etc.)
Easy Way (EW)	Bending of a rectangular tube with its short side in the plane of the tube or pipe bend
Hard Way (HW)	Bending of a rectangular tube with its long side in the plane of the tube or pipe bend
I.D.	Inside diameter of the tube or pipe bends
Minimum Tangent	The minimum straight on the end of pipe bends required by the bending machine to form the bend
Neutral Axis	That portion of the pipe or tube that is neither in compression or tension.
O.D.	Outside diameter in inches of the tube or pipe
Out of Plane	The deviation of the horizontal plane of a single pipe bend between its tangent points, based on the theoretical center-line of the pipe bend
Ovality	The distortion or flattening of pipe or tube from its normal, round shape caused by the pipe bending process
Springback	Amount of degrees material will return after bending pressure is released
Tangent	The straight portion of material on either side of arc of bending bends. See Tube Bending and Pipe Bending Diagrams.
Tangent Point	The point at which the bend starts or ends. See Tube Bending and Pipe Bending Diagrams.
Wall	The thickness in inches of tubular pipe bending material.
Wrinkles	Waving or corrugation of pipe bending bends in the inner radius.

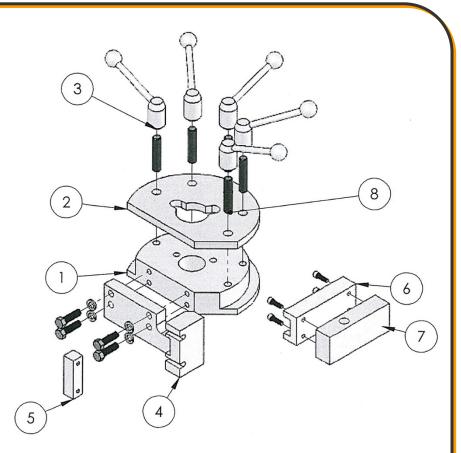
BENDING SUGGESTIONS

Aluminum Bending

If bending aluminum, lubrication is very important, if the results are less than desirable with WD-40 other lubricants can be used such as:

- Johnson Paste Wax (seems to work the best)
- High Pressure grease
- Highly rich dish soap
- The bronze counter die must be polished and have no aluminum deposits or it will continue to pick up metal.
- If using RMD's standard counterdie is not producing desired results, roller counter dies are also available.
- RMD has both steel rollers as well as plastic rollers. Plastic rollers are used primarily for polished aluminum. Steel rollers would be used for non-polished materials.
- Some aluminum will crack as it is being bent, 6061-T6 is very hard and may need to be annealed or ordered in the "T-0" condition. Aluminum will age harden so if possible try to get freshly run material.

Heavy Wall DOM tubing


If heavy wall materials are bent to a tight radius, they can tend to slip in the hook arm causing a poor bend result, below are some suggestions

- Use a vise clamp on the outside of the hook arm to "lock" the material in place.
- Use a piece of two sided coarse emery cloth in between the hook arm and the material, this works very well.
- In only this application, high pressure grease applied to the DIE GROOVE also helps.
- RMD can make special clamps to hold material in place.

Bending With Square Dies

- Die Parts
- 1 Main Bending Die
- 2 Die Cap
- 3 Quick Release Handles
- 4 Hook-Arm
- 5 Hook-Arm Clamp
- 6 Plastic Slide
- 7 Slide Mount
- 8 Quick Release Studs

Square Tooling Setup

- 1. Install the bending die (1) on to the spindle. Be careful not to pinch your fingers as you lower the die on to the spindle. The die will only fit on the spindle one way. Bolt the die to the spindle using the holes in the die.
- 2. Install the plastic counter die assembly (6, 7) with the long end pointing away from the hook arm.
- 3. Snug up the cap clamps (3). Do not over tighten! Or they will be overly difficult to loosen after the bend is complete. Note: tighten clamps without material in the die. The clamps are lift and turn, so you can position them anywhere. This allows the handles to clear the counter-die mount during bending.
- 4. Insert the material in to the hook arm (4) and pull in to the die. It may be a tight fit. Continue to pull until the material is fully seated in the die's groove.
- 5. Lube the counter die and the material that will slide along the counter die. Bring the plastic counter die assembly up to the material, leaving about 1/8" to 1/4" gap. (Note: on some thinner material it helps to keep the counter die approx. 1" away from the material)

IMPORTANT: Do not lube the bending die surfaces. This will increase the possibility for slippage. Make sure all the die cap clamp handles (3) are inside the die diameter. They could catch the counter die mounting assembly and break off.

- 6. If the material slips during the bending operation, install the hook arm clamp (5). Do not use it unless you have to.
- 7. Activate the bender and bend to the desired angle.
- To remove the material, open the counter die and return bender to the "home position". Using a soft mallet, gently tap the cap clamps open and the material will spring out of the die (1). Remove the material and re-snug the cap clamps.
- 9. Install the next piece of material to be bent and repeat these steps.

Large Size Square

When bending larger than 1.5" (38.1mm) thinner wall square tubing, the counter die position seems to work better between 1/2" and 1" (12.7-25.4mm) farther away from the die. This seems do reduce side wall distortion and inner wrinkling. Although this suggestion is to help on large size, the same steps can be used for any square, if trying to achieve better results. If the square material slips in the hook arm, use the supplied clamp and bolts to hold in place. RMD offer crush bend dies to form a concave crease on the inside of square bends to reduce the possibility of wrinkling.

INDEX TABLE ATTACHMENT (OPTIONAL EQUIPMENT)

Introduction

The IDX-10 Indexing table was designed to allow you too accurately and repeatedly position distances between bends, by using the adjustable stops. Also the IDX-10 can be used to hold the material being bent perfectly level while bending, or altering the angles between bends.

Connection to Your Machine

- 1. Remove the shaft mounting bracket [#2] (angle iron) leaving the slide shaft [#16] in place.
- 2. Slide the front of the main track tube [#1] onto the slide shaft [#16].
- 3. Reattach the shaft mounting bracket [#2] and tighten bolts.
- 4. With the front of the main track tube attached, lift up the rear and support it with a sturdy saw horse or equal.
- 5. Attach the rear leg adjuster [#13] using the supplied 3/8 X 1" bolts.
- 6. Align the keyways with the slide bolt and slip the caster mount [#12] onto the leg adjuster [#13].

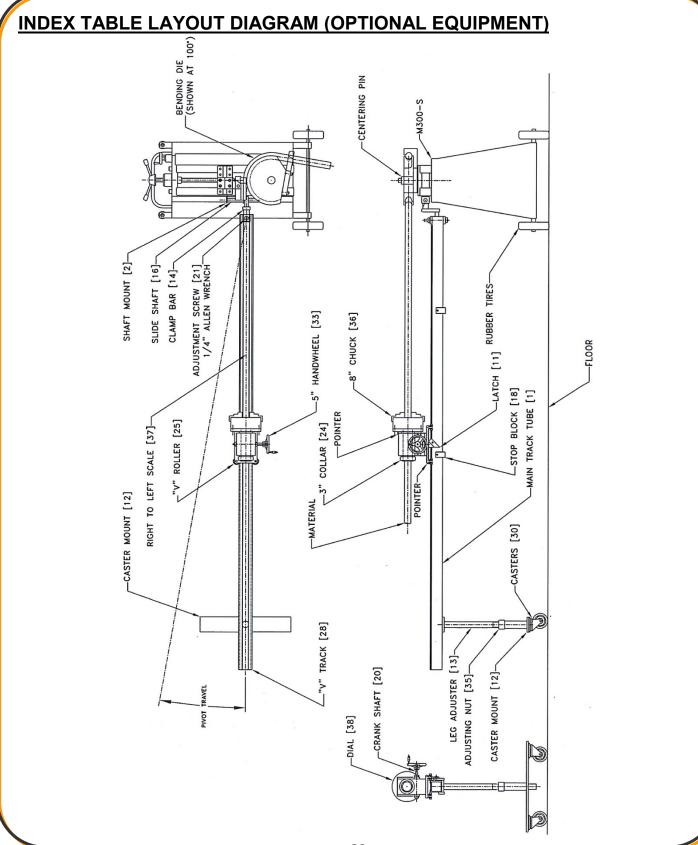
Height Adjustment and Leveling

- 1. Level your machine on a flat hard surface. It may be necessary to fasten or lock the machine in place to keep the machine from rotating instead of the index table. (The index table must be allowed to pivot and rotate with its wheels.)
- 2. With the machine level, choose the desired die set.
- 3. The thickness of the die determines the height of the index table. Using the chart shown in diagram 4 find the correct number of turns required for your die.
- 4. Rotate the height adjustment screw [#21] clockwise until it stops. This is the lowest the table will go. (EXAMPLE 1-1/2 die)
- 5. Rotate the adjustment screw [#21] counter clockwise the exact number of turns that were chosen from the chart.
- 6. Using a 2 ft. level placed on the main track tube, rotate the large nut [#35] until the main track tube is level.
- 7. Position the front of the main track tube so the center line of the track tube matches the center (radius) line of the die.
- 8. The Chuck/Gearbox assembly is designed to pivot on its mount, tension is adjusted with spring washers beneath the (2) ½-13 mounting bolts. For small light weight material, the swivel will need to be loosened so it pivots easily, for heavy material, the swivel should be tightened to increase resistance.

HEIGHT ADJUSTMENT				
CCW TO RAISE				
TURNS CCW	DIE THICKNESS			
0.0=	1.50			
2.5=	2.00			
5.0=	2.50			
7.5=	3.00			
10.0=	3.50			

Material Layout

Before you can use the IDX table, the bend positions of your first piece of material needs to be laid out. Using Diagram1 and Table1 you can determine all of the bend start points, these points should be transferred to the material using a fine point sharpie marker. This diagram is a generic two bend scenario, for more complex parts the steps are generally the same. Use section 10 for further reference.


Operation

- 1. After the connection to your machine is complete, and the height and center line positions are verified, the IDX-10 can be used.
- 2. Your first part should now be clearly marked. These marks will be used to position the tubing perfectly with the "0" mark on the die, and to set your IDX stops. Only your first part needs to be marked, after that the IDX stops will be used.
- 3. Insert a piece of material through the hook arm of the die being used and insert through the chuck. (note: If multiple parts are being produced, the material should be marked so the linear chuck position can be repeated) position the material so the start of bend mark lines up with the "0" mark on the die, now set your first stop on the index table and produce the first bend. NOTE: The complete table will swing, be sure not to interfere with the motion.
- 4. After the bend is complete, the die must return to home. Once the die is home, the material can be advanced and rotated (if required) to the next "0" mark. The next stop can now be set. Repeat as required, your IDX table comes standard with (4) stops.

IMPORTANT: Make sure the hook arm of the die does not catch the tubing when returning to home position.

5. The previous steps are just examples how to set stops and produce various bends; it is up to the user to define exactly how their IDX will be set up. RMD will be glad to offer any suggestions for your application.

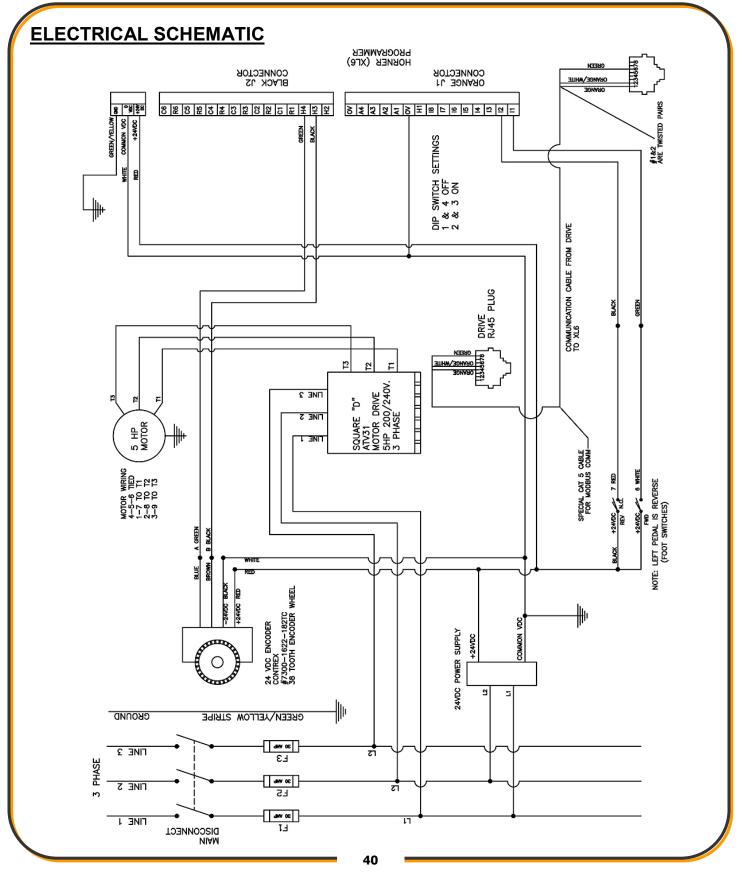
LUBRICATION AND MAINTENANCE

WARNING: Make sure the electrical disconnect is <u>OFF</u> before working on the machine.

Maintenance should be performed on a regular basis by qualified personnel. Always follow proper safety precautions when working on or around any machinery.

- Check daily for any unsafe conditions and fix immediately.
- Check that all nuts and bolts are properly tightened.
- On a weekly basis clean the machine and the area around it.
- Lubricate threaded components and sliding devices.
- Apply rust inhibitive lubricant to all non-painted surfaces.

Note: Proper maintenance can increase the life expectancy of your machine.


Gear Box Oil

The main Planetary Gear Box is lubed with 80W90 gear lube. Check and replace the gear lube every 3 years or 200hrs of continuous use.

Main Spindle Bearing

The only grease fitting on the bender is the main spindle bearing zerk fitting. Pump with 3-4 shots every month or 10hrs of continuous use.

TROUBLESHOOTING

WARNING: Make sure the electrical disconnect is <u>OFF</u> before working on the machine. Use the lockout provided on the main disconnect switch. Wait at least 1 min before working on any circuit, because the VFD capacitors may have energy stored.

Always follow proper safety precautions when working on or around any machinery.

FAULT	PROBABLE CAUSE	REMEDY
Machine does not power up	Wrong or non-existent input power source. Blown fuse or tripped circuit breaker.	Check input power and verify voltage Check and replace fuses. Reset circuit breakers
Oil leaking from breather	Normal expansion of gearbox oil	Let oil purge from gearbox and take no further action.
Home position is not in correct position.	Loss of power during bending, or service work was performed	Go to homing screen on controller and repeat homing sequence. If not accessible, contact factory.
Material slips in hook arm	Too much oil on tubing or oil is on the die groove. Clear Radius is too tight. Material has too thin of wall thickness.	Clean material and die groove with solvent. Increase clear radius. Increase wall thickness. Material may need to be clamped top hook arm to prevent slipping. Only the counter die should be lubed
Poor bend results	Worn counter die. Worn die groove. Wrong size material and or wall thickness. Too tight of a clr.	Replace counter die. Replace die. Verify material size is correct. Verify clr
Twisting material	Bend die is not bolted down, Misaligned counter die, worn spindle bearing	Verify the bend die is bolted down to the spindle. Check counter die alignment. Replace spindle bearing
Machine overloads and wont bend	Material is too big for machines capacity. Tensile strength of material is too high. Input power is too low. Bending speed is too fast. No lube on counter die.	Verify material wall thickness and diameter for capabilities. Get material with lower tensile strength. Lower bend speed. Verify input power.
Inaccurate bending	Counter Die leadscrew position is changing. Material diameter is not consistent	Verify that the counter die leadscrew is holding its position via the counter. Verify material diameter with a caliper size.

TABLES, CHARTS, & DIAGRAMS

Table 1 Standard Pipe Sizes and Schedules

PIPE SIZES	O.D.	Pipe Schedules and Wall Thickness					
		5	10	40	80	160	XX STRONG
1/8	0.405	0.400	0.050	0.068	0.095		
1/4	0.540	0.500	0.070	0.088	0.119		
3/8	0.675	0.500	0.070	0.091	0.126		
1/2	0.840	0.700	0.080	0.109	0.147	0.188	0.294
3/4	1.050	0.700	0.080	0.113	0.154	0.219	0.308
1	1.315	0.700	0.110	0.133	0.179	0.250	0.358
1-1/4	1.660	0.700	0.110	0.140	0.191	0.250	0.382
1-1/2	1.900	0.700	0.110	0.145	0.200	0.281	0.400
2	2.375	0.700	0.110	0.154	0.218	0.344	0.436
2-1/2	2.875	0.800	0.120	0.203	0.276	0.375	0.552

Table 2 Die Color Code Chart

Material	Color
Pipe	Green
Tube	Blue
Metric	Red
Square or Rectangle	Gray

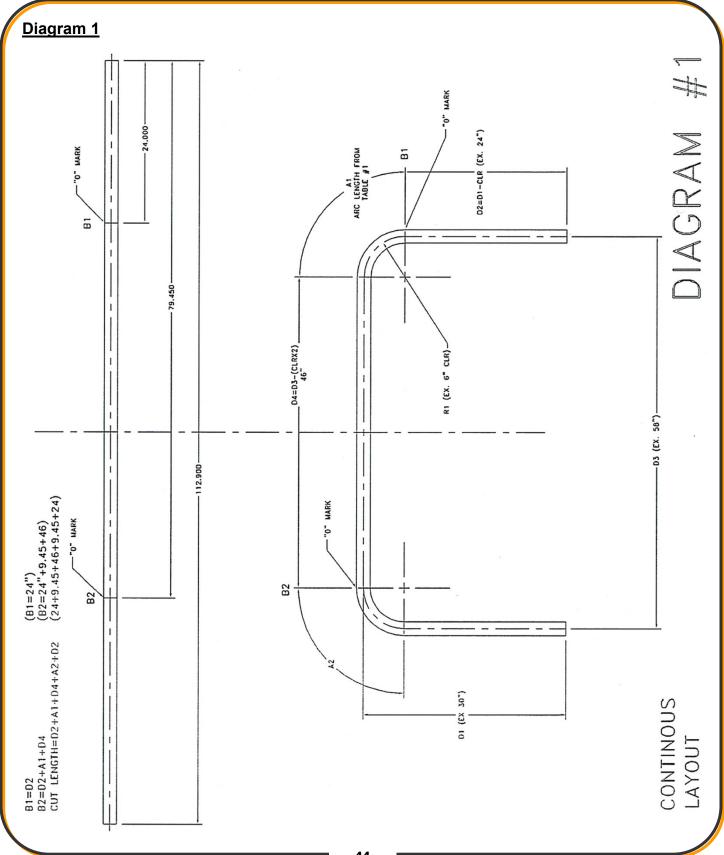
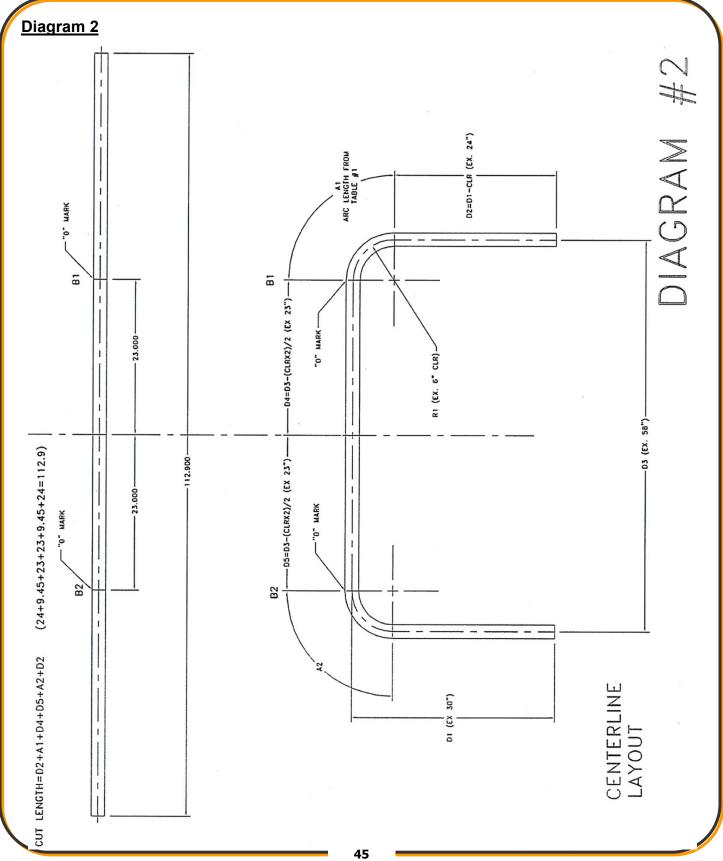
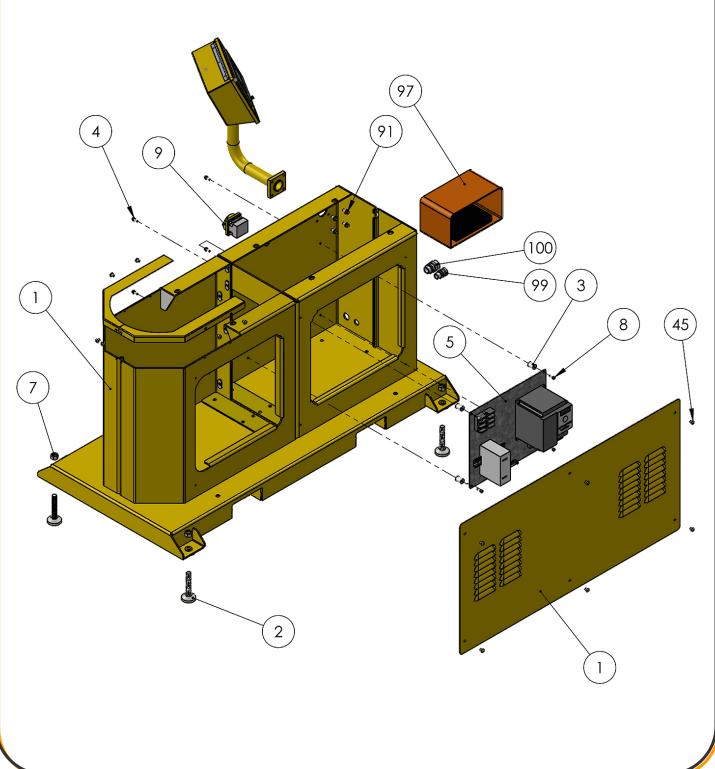
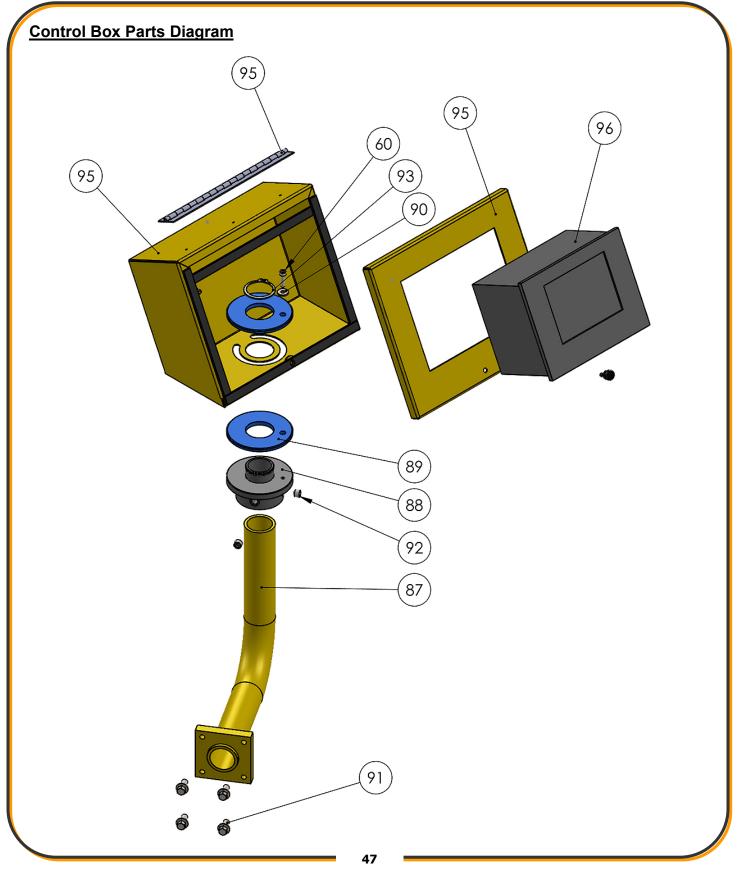


Table 3 ARC LENGTH TABLE


EXAMPLE: Arc Length = Constant x Bend Radius. Example: 90deg bend with 6" clr EXAMPLE: 1.575 (from table) x 6" (clr) = 9.45" (Arc Length) For bends more than 90deg, Constants can be added together.

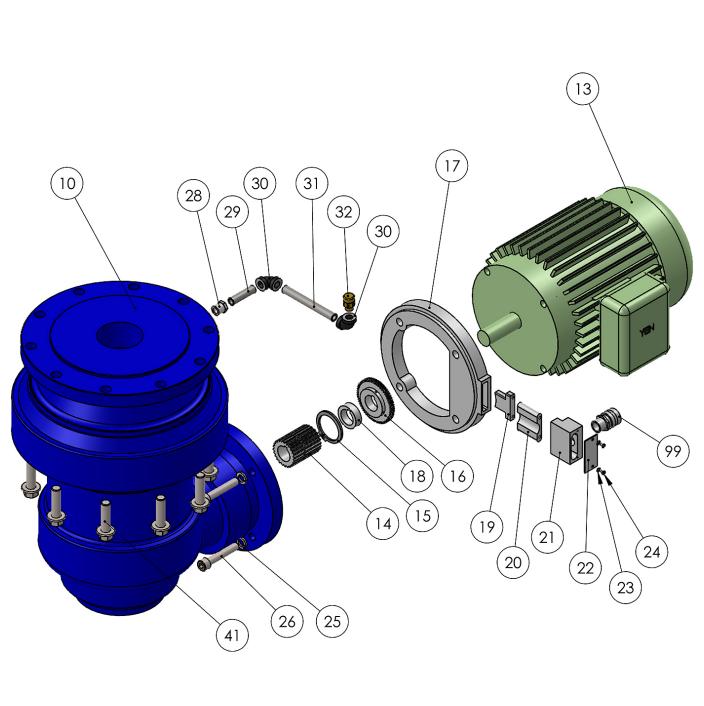
Degrees	Constant	Degrees	Constant	Degrees	Constant
1	0.0175	31	0.5410	61	1.0645
2	0.0349	32	0.5584	62	1.0819
3	0.0524	33	0.5759	63	1.0994
4	0.0698	34	0.5933	64	1.1168
5	0.0873	35	0.6108	65	1.1343
6	0.1047	36	0.6282	66	1.1517
7	0.1222	37	0.6457	67	1.1692
8	0.1396	38	0.6631	68	1.1866
9	0.1571	39	0.6806	69	1.2041
10	0.1745	40	0.6980	70	1.2215
11	0.1920	41	0.7155	71	1.2390
12	0.2094	42	0.7329	72	1.2564
13	0.2269	43	0.7504	73	1.2739
14	0.2443	44	0.7678	74	1.2913
15	0.2618	45	0.7853	75	1.3088
16	0.2792	46	0.8027	76	1.3262
17	0.2967	47	0.8202	77	1.3437
18	0.3141	48	0.8376	78	1.3611
19	0.3316	49	0.8551	79	1.3786
20	0.3490	50	0.8725	80	1.3960
21	0.3665	51	0.8900	81	1.4135
22	0.3839	52	0.9074	82	1.4309
23	0.4014	53	0.9249	83	1.4484
24	0.4188	54	0.9423	84	1.4658
25	0.4363	55	0.9598	85	1.4833
26	0.4537	56	0.9772	86	1.5007
27	0.4712	57	0.9947	87	1.5182
28	0.4886	58	1.0121	88	1.5356
29	0.5061	59	1.0296	89	1.5531
30	0.5235	60	1.0470	90	1.5705

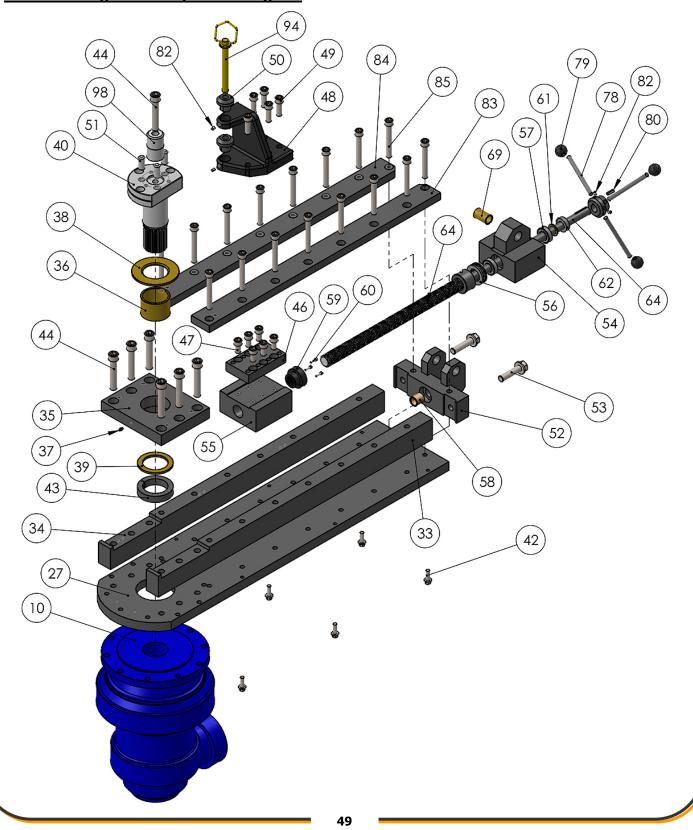




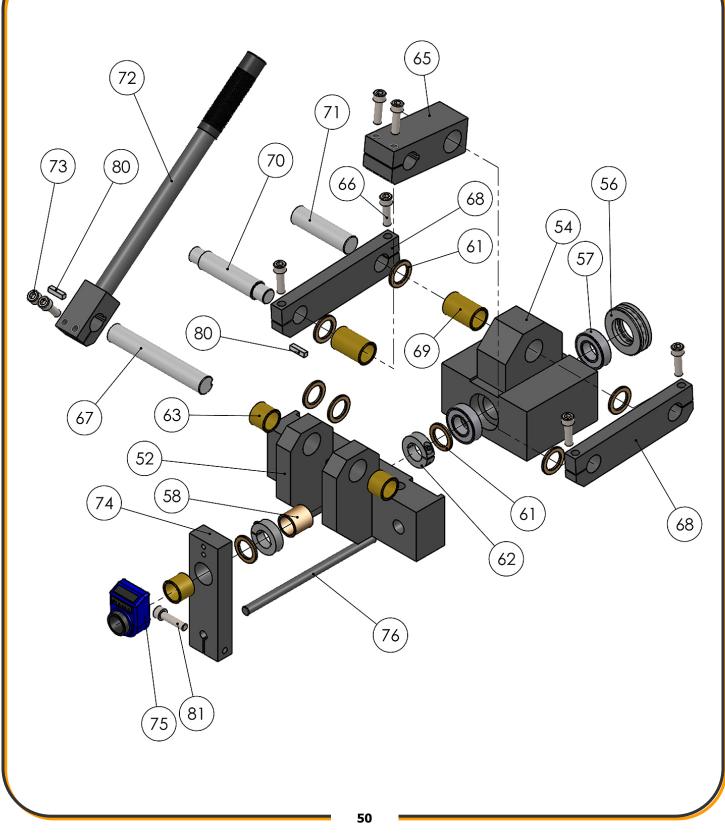
PARTS DIAGRAM

Base Assembly Parts Diagram





Drive Assembly Parts Diagram



Main Bending Assembly Parts Diagram

Quick Release Assembly Parts Diagram

Parts List

Item	Part Number	Description	Qty.
1	M350-5A032	Cabinet, Assembly	1
2	M350-7A071	Leveling Foot	
3	ME-M200-7A005	Stand Off	4
4	M6 X 1.0 X 14	Hex Flange	4
5	NONE	Me-M350 Electrical Panel	1
7	Imperial	5/8-11 Hex Nut	4
8	M6 X 1.0 X 14	SHCS	4
9	PP-0304	On/Off 2 Pole Switch	1
10	PP-0454	M350 Gearbox	1
12	Imperial	1/2-13 X 2.25 SHCS	6
13	PP-1079	5Hp (3.75kw) 3 Phase Motor	1
14	PP-0454-B	Spline Adaptor	1
15	Imperial	Ext. Retaining Ring	1
16	PP-0453-F	Encoder Gear	1
17	PP-0453-C	Encoder Adaptor	1
18	M350-7A007	Encoder Spacer	1
19	PP-0453-G	Encoder	1
20	PP-0453-D	Spacer	1
21	PP-0453-B	Encoder Housing	1
22	PP-0453-A	Housing Cover	1
23	Imperial	Star Washer	2
24	Imperial	.138-32 X 3/16 Cr-PHMS	2
25	Imperial	1/2 Lock Washer	4
26	Imperial	1/2-13 X 2.75 SHCS	4
27	ME-M400-6A001	Base Plate	1
28	PP-0586	3/8" To 1/4" Reducer	1
29	PP-0587	1/4" X 2" Pipe	1
30	PP-0589	1/4" Elbow	2
31	PP-0588	1/4" X 4 1/2" Pipe	1
33	ME-M400-6A002	Side Frame (L.H.)	1
34	ME-M400-6A022	Side Frame (R.H.)	1
35	ME-M400-5A001	Bearing Plate Assy.	1
36	PP-0141	3.50 O.D. X 3.0 I.D. X 2.50 LG	1

Item	Part Number	Description	Qty.
37	.25-28 GREASE ZERK	Straight Grease Zerk	1
38	M400-7A012	Large Thrust Washer	1
39	M400-7A013	Small Thrust Washer	1
40	ME-M325-7A001	M325/M350 Spindle	1
41	M16 X 2.0 X 55	Hex Flange	10
42	M12 X 1.75 X 35	Hex Flange	6
43	PP-0118	3.0" Clamp Collar	1
44	M20 X 2.5 X 110	SHCS	7
45	M8 X 1.25 X 10	Button Head	12
46	ME-M350-6A005	Slide Key	1
47	SHCS	M16 X 2.0 X 30 SHCS	6
48	ME-M350-5A003	Counter Die Mount	1
49	M16 X 2.0 X 50	SHCS	5
50	M400-7A008	Reducer Bushing	2
51	PP-1071	3/4" Dowel Pin	3
52	M400-5A004	Rear Brace Assembly	1
53	M20 X 2.5 X 75	Hex Flange	2
54	M350-5A023	Slide Block	1
55	ME-M350-6A034	Slide Block	1
56	PP-0209	Thrust Ball Bearing	1
57	PP-0210	Thrust Ball Bearing	2
58	PP-0143	1.25 Od X 1.0 ld X 1.25 LG	1
59	ME-M350-7A046	Lead Screw Nut	1
60	M5 X 0.8 X 20	SHCS	4
61	PP-0056	1.0 ld X 1.5 Od X .125 THK	8
62	PP-0036	1.0 Clamp Collar (Split)	2
63	PP-0144	1.0 ld X 1.25 Od X 1.0 Long	3
64	M400-7A002	Lead Screw Assy.	1
65	ME-M400-6A009	Link Block	1
66	M10 X 1.5 X 35	SHCS	6
67	M400-7A005	Pivot Shaft	1
68	ME-M400-6A010	Link	2
69	PP-0142	1.25 O.D. X 1.00 I.D. X 2.00 LG	2
70	M400-7A007	Latch Pin	1
71	M400-7A006	Pivot Pin	1

Item	Part Number	Description	Qty.
72	ME-M350-5A012	Quick Release Lever Assy.	1
73	M10 X 1.5 X 30	SHCS	2
74	ME-M400-6A012-V2	Counter Mount	1
75	PP-0137-V2	Fiama Counter	1
76	M350-7A010	Guide Shaft	1
77	ME-M400-7A003-3	Spider Hub	1
78	M150-7A013	Quick Release Shaft	3
79	PP-0133	Black Ball Knob	3
80	Imperial	.25 X .25 X 1.0 Key	3
81	M10 X 1.5 X 40	SHCS	1
82	M8 X 1.25 X 10	Set Screw	4
83	ME-M400-6A006	Slide Cap (L.H.)	1
84	ME-M400-6A007	Slide Cap (R.H.)	1
85	M16 X 2.0 X 120	SHCS	16
86	ME-M350-6A120	Box Arm Base Plate	1
87	M350-6A119	Elec Box Tube Arm	1
88	ME-M350-7A057	Electrical Box Pivot Hub	1
89	M350-7A058	Electrical Box Washer	2
90	Imperial	5mm Flat Washer	1
91	M8 X 1.25 X 14	Hex Flange	4
92	M10 X 1.5 X 8	Set Screw	2
93	Imperial	1 1/2" Ext. Retaining Ring	1
94	PP-0477	Hitch Pin	1
95	M350-5A026	Touch Screen Enclosure	1
96	PP-1082	M350 Controller	1
97	PP-0666	Foot Pedal	1
98	ME-M300-7A003	Center Pin	1
99	PP-0023	Cord Grip	2
100	PP-0290	3/4" Cord Grip	1

<u>NOTES</u>

<u>NOTES</u>

NOTES

www.machineryhouse.com.au

General Machinery Safety Instructions

Machinery House

requires you to read this entire Manual before using this machine.

- Read the entire Manual before starting machinery. Machinery may cause serious injury if not correctly used.
- 2. Always use correct hearing protection when operating machinery. Machinery noise may cause permanent hearing damage.
- 3. Machinery must never be used when tired, or under the influence of drugs or alcohol. When running machinery you must be alert at all times.
- **4. Wear correct Clothing.** At all times remove all loose clothing, necklaces, rings, jewelry, etc. Long hair must be contained in a hair net. Non-slip protective footwear must be worn.
- 5. Always wear correct respirators around fumes or dust when operating machinery. Machinery fumes & dust can cause serious respiratory illness. Dust extractors must be used where applicable.
- 6. Always wear correct safety glasses. When machining you must use the correct eye protection to prevent injuring your eyes.
- 7. Keep work clean and make sure you have good lighting. Cluttered and dark shadows may cause accidents.
- 8. Personnel must be properly trained or well supervised when operating machinery. Make sure you have clear and safe understanding of the machine you are operating.
- **9. Keep children and visitors away.** Make sure children and visitors are at a safe distance for you work area.
- **10. Keep your workshop childproof.** Use padlocks, Turn off master power switches and remove start switch keys.
- **11. Never leave machine unattended.** Turn power off and wait till machine has come to a complete stop before leaving the machine unattended.
- **12. Make a safe working environment.** Do not use machine in a damp, wet area, or where flammable or noxious fumes may exist.
- 13. Disconnect main power before service machine. Make sure power switch is in the off position before re-connecting.

- **14. Use correct amperage extension cords.** Undersized extension cords overheat and lose power. Replace extension cords if they become damaged.
- **15. Keep machine well maintained.** Keep blades sharp and clean for best and safest performance. Follow instructions when lubricating and changing accessories.
- **16. Keep machine well guarded.** Make sure guards on machine are in place and are all working correctly.
- **17. Do not overreach.** Keep proper footing and balance at all times.
- **18. Secure workpiece.** Use clamps or a vice to hold the workpiece where practical. Keeping the workpiece secure will free up your hand to operate the machine and will protect hand from injury.
- **19. Check machine over before operating.** Check machine for damaged parts, loose bolts, Keys and wrenches left on machine and any other conditions that may effect the machines operation. Repair and replace damaged parts.
- **20. Use recommended accessories.** Refer to instruction manual or ask correct service officer when using accessories. The use of improper accessories may cause the risk of injury.
- **21. Do not force machinery.** Work at the speed and capacity at which the machine or accessory was designed.
- **22. Use correct lifting practice.** Always use the correct lifting methods when using machinery. Incorrect lifting methods can cause serious injury.
- **23. Lock mobile bases.** Make sure any mobile bases are locked before using machine.
- **24.** Allergic reactions. Certain metal shavings and cutting fluids may cause an ellergic reaction in people and animals, especially when cutting as the fumes can be inhaled. Make sure you know what type of metal and cutting fluid you will be exposed to and how to avoid contamination.
- **25. Call for help.** If at any time you experience difficulties, stop the machine and call you nearest branch service department for help.

MACHINERYHOUSE

Elec/Mech Pipe/Tube Bender Safety Instructions

Machinery House

requires you to read this entire Manual before using this machine.

- 1. Maintenance. Make sure the Pipe/Tube Bender is turned off and disconnect from the main power supply and make sure all moving parts have come to a complete stop before any inspection, adjustment or maintenance is carried out.
- 2. Pipe Bender Condition. Pipe/Tube Bender must be maintained for a proper working condition. Never operate a Pipe/Tube Bender that has damaged or worn parts. Scheduled routine maintenance should performed on a scheduled basis. Check frame, rollers, springs & formers for cracks or damage. Replace if necessary.
- **3. Former Condition.** Never operate a Pipe/Tube Bender with damaged or badly worn Formers. Replace if required.
- **4. Hand Hazard.** Keep hands away from the Pipe/Tube Bender, under any circumstances, while the machine is in operation mode. Serious injury can occur.
- 5. Gloves & Glasses. Always wear leather gloves and approved safety glasses when using this machine.
- **6. Work area hazards.** Keep the area around the Pipe/Tube Bender clean from oil, tools, objects & chips. Pay attention to other persons in the area and know what is going on around the area to ensure unintended accidents.
- **7. Guards.** Do not operate Pipe/Tube Bender without the correct guards in place. Necessary guards protect you from injuries by worm-type gearbox and other gears. The only other area which needs to be carefully monitored during use is the rotational area of the formers.
- 8. Understand the machines controls. Make sure you understand the use and operation of all controls.
- **9. Overloading Pipe/Tube Bender.** Do not over load the machine by using material which exceeds the rated capacity.

- **10. Avoiding Entanglement.** Pipe/Tube Bender guards must be used at all times. Tie up long hair and use the correct hair nets to avoid any entanglement with the Pipe/Tube Benders moving parts.
- **11. Trained Operator.** This machine must be operated by authorized and trained personnel.
- **12. Power outage.** In the event of a power failure during use of the machine, turn off all switches to avoid possible sudden start up once power is restored.
- **13. Warning Labels.** Take note of any warning labels on the machine and do not remove them.
- **14. Material Hazard.** Do not bend plastics or other objects that could shatter. Serious injury can occur.
- **15. Stopping the Former.** Do not stop or slow the former with your hand or workpiece. Allow the machine to stop on its own.
- **16. Secure Pipe/Tube Bender.** Make sure you bolt the machine down so it is secure when in operation.
- **17. Pinching.** Prevent pinching by releasing pressure on the workpiece when not in use.
- **18. Emergency stop.** Use the emergency stop button in case of any emergency.
- **19. Hearing protection and hazards.** Always wear hearing protection as noise generated from machine and workpiece can cause permanent hearing loss over time.
- **20. Call for help.** If at any time you experience difficulties, stop the machine and call you nearest branch service department for help.

MACHINERYHOUSE

PLANT SAFETY PROGRAM

NEW MACHINERY HAZARD IDENTIFICATION, ASSESSMENT & CONTROL

Electric/Mechanical Pipe/Tube Benders

Developed in Co-operation Between A.W.I.S.A and Australia Chamber of Manufactures This program is based upon the Safe Work Australia, Code of Practice - Managing Risks of Plant in the Workplace (WHSA 2011 No10)

	0	т	т	റ	Β	ltem No.
	OTHER HAZARDS, NOISE.	ELECTRICAL	STRIKING	CUTTING, STABBING OR PUNCTURING	CRUSHING	Hazard Identification
Plant Safety Proc	LOW	MEDIUM	MEDIUM	MEDIUM	HIGH	Hazard Assessment
Plant Safety Program to be read in conjunction with manufactures instructions	Wear hearing protection as required.	All electrical enclosures should only be opened with a tool that is not to be kept with the machine. Machine should be installed & checked by a Licensed Electrician.	Use equipment in the correct manner as to avoid parts being ejected out under pressure. Ensure correct formers are used for the correct job.	Use equipment in the correct manner as to avoid parts being ejected out under pressure.	Do not exceed maximum capacity. Check equipment for damage prior to use. Wear safety boots. Never put any part of your body between moving formers and material. Always support material properly.	Risk Control Strategies (Recommended for Purchase / Buyer / User)

Revised Date: 12th March 2012

Manager: ...

.....

Authorised and signed by: Safety officer:..

HARE MACHINERYHOUSE t

MACHINERYHOUSE

www.machineryhouse.co.nz

www.machineryhouse.com.au